

International Journal of Pharmacy & Life Sciences

Open Access to Researcher

©2010, Sakun Publishing House and licensed by IJPLS, This is Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited.

HPLC Method validation for estimation of Atenolol and Indapamide in tablet

dosage form

Aditi Mehta*and Neetesh K. Jain

Faculty of Pharmacy, Oriental University, Indore (M.P.) - India

Article info

Abstract

Received: 09/08/2021

Revised: 18/08/2021

Accepted: 20/09/2021

© IJPLS

www.ijplsjournal.com

The present High Performance liquid chromatographic method is to determine Atenolol and Indapamide from its formulation. Various experiments were carried out to establish the method. The mobile phase was methanol : water (55:45) with 0.1% v/v of Ammonium Hydroxide is found to be ideal for the estimation of Atenolol and Indapamide. The elution order was as followed (Atenolol - 7.5min, Indapamide - 8.9 min). The values of linearity, Precision and standard deviation show that the proposed method was reproducible, accurate and precise.

Keywords: Method Validation, HPLC, Tablet dosage form

Introduction

Administration of two or more drugs at a time becomes imperative for several therapeutic reasons and there exist a number of drug combinations, which have proved to be effective due to combined mode of action in the body. The combined dosage forms are complex in nature during the process of estimation. It is important to confirm that one component does not interfere with the estimation of the other. [1]

competes sympathomimetic Atenolol with neurotransmitters such as catecholamines for binding at $\beta(1)$ -adrenergic receptors in the heart vascular and smooth muscle, inhibiting sympathetic stimulation. This results in a reduction in resting heart rate, cardiac output, systolic and diastolic blood pressure, and reflex orthostatic hypotension. Higher doses of atenolol competitively block $\beta(2)$ -adrenergic also responses in the bronchial and vascular smooth muscles. [2-3]

Indapamide blocks the slow component of delayed rectifier potassium current (IKs) without altering the rapid component (IKr) or the inward rectifier current. Specifically it blocks or antagonizes the action the proteins KCNQ1 and KCNE1. Indapamide is also thought to stimulate the synthesis of the vasodilatory hypotensive prostaglandin PGE2.

In the current scenario, development of analytical method plays an important role. Pharmaceutical industries rely upon quantitative chemical analysis to ensure that the raw material used and final products obtained meet the required specifications. [2-3]

The drugs and drug formulations introduced into the market may be either new entities or partial structural modifications of the existing ones or novel dosage forms or multicomponent dosage forms. Very often, there is a time lag from the date of introduction of a drug into the market to the date of its inclusion in pharmacopoeias.

*Corresponding Author

The continuous and wider usage of these drugs, reports new toxicities, patient resistance under these conditions, standards and analytical procedures for these drugs may not be available in pharmacopoeias. Therefore it becomes necessary to develop newer analytical methods. [4-5] Considering all these views the drug diac and its formulations from different therapeutic segments that are presently being marketed were selected for the present study.

Material and Methods [6-8]

Working Standard: The drug "Atenolol and Indapamide" was procured from industry. Drug Sample: ATEN-D tablet was purchased from market Atenolol : 50 mg & Indapamide : 2.5 mg). Instruments Used: Shimadzu LC 20AD HPLC System. Chromatographic Condition: Column : Phenomenex C₁₈ Analytical Column (25×0.46 cm, i.d, 5 µm); Flow rate: 1.0ml/min; Injection Volume: 20µl; Wavelength used: 260nm; Mobile Phase: Methanol:Water (55:45) with 0.1% v/v Ammonium Hydroxide.

Method validation of Aten-D tablet by RP-HPLC

Validation of method is carried out by using following validation parameters.

- Selectivity & Specificity
- Linearit
- Precision
- Limit of detection
- Limit of Quantitation or Quantification
- Change in Analyst

Specificity and system suitability

Stationary phase : C₁₈ 250 mm X 4.6 mm, 5μ, Inertsil ODS 3V.

Mobile phase: 825.0 ml of Methanol(HPLC grade), 675 ml of water (HPLC grade)was taken separately filtered through membranenylon filters of size 4.5 μ , to the filtered solution1.5 ml of Ammonium Hydroxide Solution wasadded and the mixed solution was sonicated for 15minutes and filtered through membrane nylonfilters of size 4.5 μ .

Detector parameter: UV at wavelength 260 nm.Flow rate: 1 ml/min.Injection volume: 20 μ lColumn oven temperature : 25° C.Mode: Isocratic

Elution order: Atenolol and Indapamide.

Retention time: Atenolol 7.5 min., Indapamide 8.99 min.

Blank Run Time : Methanol. : 12 minutes.

Linearity

Preparation of Stock Solution A:

Weigh accurately 50mg of Atenolol and 2.5mg of Indapamide into 10 ml of volumetric flask. Add sufficient amount of methanol, sonicate, cool and dilute upto mark with methanol.

Stock Solution B:

Take 1ml of Stock Solution A in a 100ml volumetric flask and dilute it upto 100ml with methanol.

Sample 1:

Take 1ml of stock solution A in 10ml of volumetric flask with pipette and dilute it with methanol upto the mark.

Sample 2:

Take 1ml of Sample 1 solution in 10 ml of volumetric flask with pipette and dilute it with methanol upto the mark.

Sample 3:

Take 1ml of sample 2 solution in 10 ml of volumetric flask with pippete and dilute it upto mark with methanol.

Sample 4:

Take 9ml of stock solution B in 10ml of volumetric flask with pipette and dilute upto 10ml with methanol.

Precision

Repeatability of Injection: Propagation of solution:

Preparation of solution:

From the Stock Solution C 1ml was pippeted out in 10ml of volumetric flask and the volume was made upto 10 ml with methanol.

Limit of detection

The limit of detection (LOD) was calculated using following formulae:

LOD= 3.3(SD)/S

Limit of quantification

The Limit of Quantification was calculated using following formulae:

LOQ = 10 (SD)/S,

Robustness (Change in Analyst):

Results and Discussion

The objective of present work was to validate method for estimation of Atenolol and Indapamide in tablet formulation. Validation of method is carried out by using validation parameters viz., Selectivity & Specificity, Quantitation or Quantification and Change in Linearity, Precision, Limit of detection, Limit of Analyst

Table 1: Data for Specificity test of Atenolol

Tuble 1. Dutu for specificity test of fitcholor					
Sample Name	Area µAU*sec	Retention Time	Similarity factor for		
	Atenolol	Atenolol	Atenolol		
STD 1	1428838	7.580			
STD 2	1427258	7.572			
STD 3	1428844	7.580	1.00		
%RSD	0.064	0.061			

Table 2: Data for Specificity test of Indapamide

Sample Name	Area µAU*sec	Retention Time	Similarity factor for
	Indapamide	Indapamide	Indapamide
STD 1	708991	8.986	
STD 2	707950	8.988	
STD 3	702786	9.004	0.996
%RSD	0.470	0.110	

Table 3: System Suitability

Parameter	Acceptance	Atenolol	Indapamide
	Criteria		*
Tailing Factor	NMT 2	1.253	1.002
Capacity Factor	NLT 2	2.03	2.52
Similarity Factor	0.98 to 1.02	1.0	0.996
%RSD of STD A for	NMT 2	0.064%	0.470%
Area			
%RSD of STD A for	NMT 2	0.061%	0.110%
Retention time			

Table 4: Linearity of Standards for Atenolol

Sample Name	Area µAU*min	Concentration
	Atenolol	Atenolol
Sample 4	3699	4.5
Sample 3	24941	5
Sample 2	201532	50
Sample 1	1428838	500

Table 5: Linearity of Standards for Indapamide

	*	<u> </u>
Sample Name	Area µAU*min	Concentration
	Indapamide	Indapamide
Sample 4	1934	0.225
Sample 3	14940	0.25
Sample 2	103114	2.5
Sample 1	708991	25

Table 6: Summary of Linearity

Name	Correlation
	Coefficient
Atenolol	0.99
Indapamide	0.99
Acceptance	NLT 0.99
Criteria	

International Journal of Pharmacy & Life Sciences

Volume 12 Issue 9: September. 2021 91

- -

For Atenolol:	:				
Concentration (in ppm)	Retention time	RSD in %	Area	RSD in %	Avg RSD in %
500	7.580 7.572 7.580	0.061	1428838 1427258 1428844	0.064	
50	7.612 7.609 7.608	0.027	202460 201577 203032	0.362	0.4083
5	7.608 7.596 7.600	0.080	24941 25043 25328	0.799	
For Indapam	ide:	•	•		
Concentration (in ppm)	Retention time	RSD in %	Area	RSD in %	Avg RSD in %
25	8.986 8.988 9.004	0.110	708991 707950 702786	0.470	
2.5	8.989 9.001	0.077	103114 103405	0.176	0.5723

Table 6: Repeatability of sample:

(in ppm)	time		mea	%	% III
25	8.986 8.988 9.004	0.110	708991 707950 702786	0.470	
2.5	8.989 9.001 8.989	0.077	103114 103405 103449	0.176	0.5723
0.25	9.000 8.997 9.001	0.051	14940 14815 14625	1.072	

Table 7: Data of Repeatability Test for Atenolol

Tuble 7. Duta of Repetitubility Test for Meholor					
Sample Name	Retention time	Area µAU*sec	Area %		
		Atenolol			
Sample 1	7.580	1428838	66.836		
Sample 2	7.572	1427258	66.844		
Sample 3	7.580	1428844	67.031		
Mean	7.577	1428313	66.904		
% RSD	0.061	0.064	0.165		

Table 8: Data of Repeatability Test for Indapamide

Tuble of Duta of Repeatability Test for Indupatinae					
Sample Name	Retention time	Area µAU*sec	Area %		
		Indapamide			
Sample 1	8.986	708991	33.164		

International Journal of Pharmacy & Life Sciences

92 Volume 12 Issue 9: September. 2021

Sample 2	8.988	707950	33.156
Sample 3	9.004	702786	32.969
Mean	8.993	706576	33.096
% RSD	0.110	0.470	0.333

Table 9: Summary of Repeatability

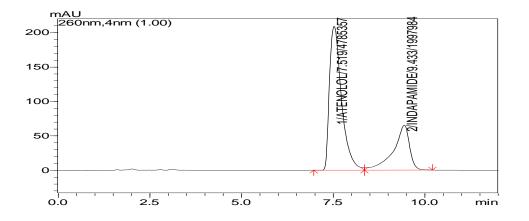
Parameter	Acceptance Criteria	Atenolol	Indapamide
%RSD of Area	NMT 2	0.064	0.47
Similarity Factor	0.98 to 1.02	0.98	1.00

Table 10: LOD for Atenolol and Indapamide

Sample Name	LOD
ATENOLOL	0.025 μg/ml
INDAPAMIDE	0.03 μg/ml

Table 11: LOQ for Atenolol and Indapamide

SAMPLE	LOQ
ATENOLOL	0.07 µg/ml
INDAPAMIDE	0.09 µg/ml


Table 12: Data for Change in Analyst:

Data for Atenolol							
Sr. no	Analyst	Sample	Amount of drug present(mg)	Amount of drug found(mg)	Area	% Label Claim	Tailing factor
1	Analyst1	Sample1	50	48.55	4794325	97.1%	1.741
2	Analyst2	Sample2	50	49.50	4785357	99.0%	1.744
3	Analyst3	Sample3	50	49.40	4784689	98.8%	1.742
	%RSD				0.163		0.057

Data for Indapamide

Formulation Sample

Sr.no	Analyst	Label Claim(mg)	Content of drug found (mg)	Sample	Area	% Label Claim	Tailing factor
1	Analyst 1	2.5	2.42	Sample1	1975164	97.1%	0.675
2	Analyst2	2.5	2.57	Sample2	1997984	103.0%	0.683
3	Analyst3	2.5	2.52	Sample3	1991474	101.1%	0.673
	%RSD				0.163		0.616

Table 13: Linearity for Atenolol in tablet

Sample Name	Concentration Atenolol	Area µAU*min Atenolol
Sample 1	5000	4794325
Sample 2	500	517772
Sample 3	50	106067
Sample 4	5	82465

Table 14: Linearity for Indapamide

Sample Name	Concentration Area µAU*min	
	Indapamide	Indapamide
Sample 1	250	1995270
Sample 2	25	212740
Sample 3	2.5	41731
Sample 4	0.25	33185

Table 15: Summary of Linearity

Name	Correlation
	Coefficient
Atenolol	0.99
Indapamide	0.99
Acceptance	NLT 0.99
Criteria	

Conclusion

The present High Performance liquid chromatographic method is to determine Atenolol and Indapamide from its formulation. Various experiments were carried out to establish the method. The mobile phase was methanol : water (55:45) with 0.1% v/v of Ammonium Hydroxide is found to be ideal for the estimation of Atenolol and Indapamide. The elution order was as

followed (Atenolol -7.5min, Indapamide -8.9 min). The values of linearity, Precision and standard deviation show that the proposed method was reproducible, accurate and precise.

Reference

 Lachman L, Liberman H A, Kanig J L, Hanna S A, Lin K. The theory and Practice of industrial Pharmacy. 3rd ed. Vargehese Publishing House Bombay; 1991: 804-55.

International Journal of Pharmacy & Life Sciences

- Chatwal G R, Arora M , Pharmaceutical Chemistry- Inorganic. 2nd ed(1). Himalaya Publishing House, Mumbai; 1999: 25-27.
- Skoog D A, Holler P J, Nieman T A. Principle of Instrumental Analysis. 5th ed. Thomson Brooks/cole Publication; 2004:301:1-4.
- Wilson & Wilson. A series of Comprehensive Analytical Chemistry. edited by G. Svelha, analytical Visible and UV-Spectroscopy, Vol. XIX, (1986), 1-7, 339-358, 653-656.
- 5. The Indian Pharmacopeia, vol. 1. The Controller of Publication, New Delhi; 1996:74-75.
- Gupta K R, Wankhede S B, Tajne M R, Wadodkar S G. High Performance Thin Layer Chromatographic Estimation of Atenolol and Indapamide from Pharmaceutical Dosage Form. Asian J. Chem. 2007; 19(6): 4183-4187.

- Patel Y P, Patil S, Indravadan B C, Sundaresan M. Isocratic, simultaneous reversed-phase high-performance liquid chromatographic estimation of six drugs for combined hypertension therapy. J. Chromatogr. A 1998; 828 :283–286.
- 8. Ranjan B K, Anwar ul Islam M, Maruf A, et al. Simultaneous high-performance liquid chromatographic Determination of atenolol and amlodipine In pharmaceutical-dosage form. Pak. J. Pharm. Sci., 2007; 20(4): 274-279.

Cite this article as:

Mehta A. and Jain N.K. (2021). HPLC Method validation for estimation of Atenolol and Indapamide in tablet dosage form, *Int. J. of Pharm. & Life Sci.*, 12(9):89-95.

Source of Support: Nil Conflict of Interest: Not declared For reprints contact: ijplsjournal@gmail.com

International Journal of Pharmacy & Life Sciences